All Issue

2020 Vol.33, Issue 5 Preview Page

Research Paper


October 2020. pp. 331-338
Abstract


References
1 
ANSYS Inc. (2019) ANSYS Release Notes Reference, Release 2019 R3.
2 
Ashby, M.F. (2011) Materials Selection in Mechanical Design, fourth ed. Oxford, UK. 10.1016/B978-1-85617-663-7.00005-9
3 
Carvalho, T.P., Morvan, H.P., Hargreaves, D.M., Oun, H., Kennedy, A. (2017) Pore-scale Numerical Investigation of Pressure Drop Behavior Across Open-cell Metal Foams, Transp. Porous Media, 117(3), pp.311~336. 10.1007/s11242-017-0835-y
4 
Dixit, T., Ghosh, I. (2018) Simulation Intricacies of Open-cell Metal Foam Fin Subjected to Convective Flow, Appl. Therm. Eng., 137(5), pp.532~544. 10.1016/j.applthermaleng.2018.04.011
5 
Ha, S.-H., Lee, H.Y., Hemker, K.J., Guest, J.K. (2019) Topology Optimization of Three-Dimensional Woven Materials Using a Ground Structure Design Variable Representation, J. Mech. Des., 141(6), pp.061403-1~10. 10.1115/1.4042114
6 
Hashin, Z., Shtrikman, S. (1963) A Variational Approach to the Theory of the Elastic Behaviour of Multiphase Materials, J. Mech. & Phys. Solids, 11(2), pp.127~140. 10.1016/0022-5096(63)90060-7
7 
Jung, C.G., Kim, S.U. (2016) Study on Material Properties of Composite Materials Using Finite Element Method, J. Comput. Struct. Eng. Inst. Korea, 29(1), pp.61~65. 10.7734/COSEIK.2016.29.1.61
8 
Skibinski, J., Cwieka, K., Kowalkowski, T., Wysocki, B., Wejrzanowski, T. (2015) The Influence of Pore Size Variation on the Pressure Drop in Open-cell Foams, Mater. & Des., 87(15), pp.650~655. 10.1016/j.matdes.2015.08.079
9 
Suleiman, A.S., Dukhan, N. (2014) Forced Convection Inside Metal Foam: Simulation over a Long Domain and Analytical Validation, Int. J. Therm. Sci., 86, pp.104~114. 10.1016/j.ijthermalsci.2014.06.022
10 
Wadly, H.N.G., Fleck, N.A., Evans, A.G. (2003) Fabrication and Structural Performance of Periodic Cellular Metal Sandwich Structures, Compos. Sci. & Technol., 63(16), pp.2331~2343. 10.1016/S0266-3538(03)00266-5
11 
Wirtz, R.A., Xu, J., Park, J.W., Ruch, D. (2003) Thermal/Fluid Characteristics of 3-D Woven Mesh Structures as Heat Exchanger Surfaces, IEEE Trans. Compon. & Pack. Technol., 26(1), pp.2331~2343. 10.1109/TCAPT.2003.811476
12 
Zhang, Y., Ha, S.-H., Sharp, K.W., Guest, J.K., Weihs, T.P. (2015) Fabrication and Mechanical Characterization of 3D Woven Cu Lattice Materials, Mater. & Des., 85, pp.743~751. 10.1016/j.matdes.2015.06.131
13 
Zhao, L., Ha, S.-H., Sharp, K.W., Geltmacher, A.B., Fonda, R.W. (2014) Permeability Measurements and Modeling of Topology- Optimized Metallic 3-D Woven Lattics, Acta Mater., 81, pp.326~336. 10.1016/j.actamat.2014.08.037
14 
Zhao, L., Ryan, S.M., Lin, S., Xue, J., Ha, S. (2017) Combining a Distributed Flow Manifold and 3D Woven Metallic Lattices to Enhance Fluidic and Thermal Properties for Heat Transfer Applications, Int. J. Heat & Mass Transf., 108, pp.2169~2180. 10.1016/j.ijheatmasstransfer.2016.12.115
15 
Zhao, L., Ryan, S.M., Ortega, J.K., Ha, S., Sharp, K.W. (2016) Experimental Investigation of 3D Woven Cu Lattices for Heat Exchanger Applications, Int. J. Heat & Mass Transf., 96, pp.296~311. 10.1016/j.ijheatmasstransfer.2015.12.059
Information
  • Publisher :Computational Structural Engineering Institute of Korea
  • Publisher(Ko) :한국전산구조공학회
  • Journal Title :Journal of the Computational Structural Engineering Institute of Korea
  • Journal Title(Ko) :한국전산구조공학회 논문집
  • Volume : 33
  • No :5
  • Pages :331-338