All Issue

2020 Vol.33, Issue 4 Preview Page

Research Paper


August 2020. pp. 245-253
Abstract


References
1 

ABAQUS (2013) ABAQUS user's and Theory Manuals, ver.6.13. Rhode Isloand: Hibbitt, Karlsson & Sorensen, Inc.

2 

Adhikari, S., Bhattacharya, S. (2012) Dynamic Analysis of Wind Turbine Towers on Flexible Foundations, Shock & Vib., 19, pp.37~56.

10.1155/2012/408493
3 

Bae, K.T., Kim, Y.S., Jin, B.M., Lee, J.P., Kim, J.Y. (2016) A Case Study on Concrete Foundation Design for offshore Wind Power, KSCE 2016 Convention, pp.178~179.

4 

Bush, E., Manuel, L. (2009) The Influence of Foundation Modeling Assumptions on Long-Term Load Prediction for Offshore Wind Turbines, Proc. of the ASME 28th International Conference on Ocean, Offshore and Arctic Engineering, Honolulu Hawaii, May.

10.1115/OMAE2009-80050
5 

Byrne, B.W., McAdam, R.A., Burd, H.J., Houlsby, G.T., Martin, C.M., Beuckelaers, W.J.A.P., Zdravković, L., Taborda, D.M.G, Potts, D.M., Jardine, R.J., Ushev, E., Liu, T., Abadias, D., Gavin, K., Igoe, D., Doherty, P., Skov Gretlund, J., Pacheco Andrade, M., Muir Wood, A., Schroeder, F.C., Turner, S., Plummer, M.A.L. (2017) PISA: New Design Methods for Offshore Wind Turbine Monopiles, Revue Française de Géotechnique, 158(3), pp.142~161.

10.3723/OSIG17.142
6 

Darvishi-Alamouti, S., Bahaari, M.R., Moradi, M. (2017) Natural Frequency of Offshore Wind Turbines on Rigid and Flexible monopiles in Cohesionless Soils with Linear Stiffness Distribution, Appl. Ocean Res., 68, pp.91~102.

10.1016/j.apor.2017.07.009
7 

Ford, W. (2014) Numerical Linear Algebra with Applications: Using Matlab, Academic Press, 1st Edition, pp.379~438.

10.1016/B978-0-12-394435-1.00018-1
8 

Jang, H.S., Kim, H.S., Kwak, Y.M., Park, J.H. (2013) Analysis of Lateral Behavior of Offshore Wind Turbine Monopile Foundation in Sandy Soil, J. Korean Soc. Steel Constr., 25(4), pp.421~430.

10.7781/kjoss.2013.25.4.421
9 

Jang, H.S., Nam, H.W., Kwak, Y.M., Yoon, S.W., Kim, H.S. (2015) The Influence of Suction Foundation Model for Offshore Wind Turbine, J. Korean Soc. Coast. & Ocean Eng., 27(5), pp.339~344.

10.9765/KSCOE.2015.27.5.339
10 

Jang, Y., Cho, S., Choi, C. (2014) Design Load Analysis for Offshore Monopile with Various Estimation Methods of Ground Stiffness, J. Korean Geosynthetics Soc., 15(9), pp.21~31.

10.14481/jkges.2014.15.9.47
11 

Jung, S., Kim, S.R., Lee, J., Lee, C.H. (2014) Effect of Foundation Flexibility of Offshore Wind Turbine on Force and Movement at Monopile Head, J. Korean Geosynthetics Soc., 13(4), pp.21~31.

10.12814/jkgss.2014.13.4.021
12 

Kim, B.J., Plodpradit, P., Suthasupradit, S., Kim, H.G., Kim, K.D. (2017) Ship Collision Analysis of Concrete Offshore Wind Turbine Structure Supported with Suction Pile, J. Wind Energy, 8(2), pp.45~56.

10.33519/kwea.2017.8.2.007
13 

Kim, N.H., Bang, U.S., Lee, K.J. (2006) A Study on Lateral Movement of Drilled Shaft Considering Stratification, Yooshin Technical Bulletin, 13, pp.154~163.

14 

Kim, D.H., Park, J.J., Chang, Y.C., Jeong, S.S. (2018) Proposed Shear Load-transfer Curves for Prebored and Precast Steel Piles, J. Korean Geotechnical Soc., 34(12), pp.43~58.

15 

Kim, J., Jeong, Y.J., Park, M.S., Song, S. (2019) Effect of Soil Stiffness Estimation on Natural Frequency of Monopiles, KSCE 2019 Convention, pp.218~219.

16 

Kim, J., Kim, M.K., Jung, S.D. (2015) Two-Dimensional Numerical Tunnel Model using a Winkler based Beam Element and Its Application into Tunnel Monitoring Systems, Clust. Comput., 18(4), pp.707~719.

10.1007/s10586-014-0418-4
17 

Kim, P.H., Kang, S.Y., Lee, Y.W., Kang, Y.J. (2016a) Study on the Natural Frequency of Wind Turbine Tower Based on Soil Pile Interaction to Evaluate Resonant Avoidance Frequency, J. Korea Acad.-Ind. Cooperation Soc., 17(4), pp.734~742.

10.5762/KAIS.2016.17.4.734
18 

Kim, M.Y., Yun, H.T., Kwak, T.Y. (2002) Derivation of Exact Dynamic Stiffness Matrix of a Beam-Column Element on Elastic Foundation, J. Comput. Struct. Eng. Inst. Korea, 15(3), pp.463~469.

19 

Kim, W.S., Jeong, Y., Kim, K., Kim, K.J., Lee, J.H. (2016b) Seismic Analysis for Multi-pile Concrete Foundation in 5MW class Offshore Wind Turbine, J. Comput. Struct. Eng. Inst. Korea, 29(3), pp.209~218.

10.7734/COSEIK.2016.29.3.209
20 

Korean Geotechnical Society(KGS) (2014) Design of Offshore Wind Turbine Foundation for Geotechnical Engineers, CIR, pp.238~254.

21 

Kurabayashi, H., Cho, S.K. (2016) Vibration Control Device, KR Patent, No.1016584900000.

22 

Limkatanyu, S., Kuntiyawichai, K., Spacone, E., Kwon, M. (2013) Nonlinear Winkler-Based Beam Element with Improved Displacement Shape Functions, KSCE J. Civil Eng., 17(4), pp.192~201.

10.1007/s12205-013-1606-0
23 

Lee, D.I., Park, S.Y., Cho, Y.W., Kim, H.S. (2016) Development of Concrete Supporting Structure Design Using Suction Foundation in Offshore Wind Farms, Yooshin Technical Report, 23, pp.45~56.

24 

Smith, I.M., Griffiths, D.V. (2004) Programming the Finite Element Method, 4th, John Wiley & Sons, Chichester, England, pp.25~29.

25 

Zaaijer, M. (2002) Foundation Models for the Dynamic Response of Offshore Wind Turbines, Marine Renewable Energy Conference, Newcastle, UK.

Information
  • Publisher :Computational Structural Engineering Institute of Korea
  • Publisher(Ko) :한국전산구조공학회
  • Journal Title :Journal of the Computational Structural Engineering Institute of Korea
  • Journal Title(Ko) :한국전산구조공학회 논문집
  • Volume : 33
  • No :4
  • Pages :245-253
  • Received Date :2020. 03. 05
  • Revised Date :2020. 04. 27
  • Accepted Date : 2020. 04. 28